Stein’s method for discrete Gibbs measures

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stein ’ S Method for Discrete Gibbs Measures

Stein’s method provides a way of bounding the distance of a probability distribution to a target distribution μ. Here we develop Stein’s method for the class of discrete Gibbs measures with a density e , where V is the energy function. Using size bias couplings, we treat an example of Gibbs convergence for strongly correlated random variables due to Chayes and Klein [Helv. Phys. Acta 67 (1994) ...

متن کامل

Gibbs Measures for Fibred Systems

We consider a topological dynamical system T : Y ! Y on a metric space Y which forms a bre bundle over another dynamical system. If T is brewise expanding and exact along bres and if ' is a HH older continuous function we prove the existence of a system of conditional measures (called a family of Gibbs measures) where the Jacobian is determined by '. This theorem reduces to Ruelle's Perron-Frob...

متن کامل

Escape rates for Gibbs measures

In this paper we study the asymptotic behaviour of the escape rate of a Gibbs measure supported on a conformal repeller through a small hole. There are additional applications to the convergence of the Hausdorff dimension of the survivor set.

متن کامل

Symmetric Gibbs Measures

We prove that certain Gibbs measures on subshifts of finite type are nonsingular and ergodic for certain countable equivalence relations, including the orbit relation of the adic transformation (the same as equality after a permutation of finitely many coordinates). The relations we consider are defined by cocycles taking values in groups, including some nonabelian ones. This generalizes (half ...

متن کامل

STAT 206A: Gibbs Measures

Recall that E denotes the number of red edges, and F denotes the total number of edges. Then E = ξF = ξNΛ′(1) with ξ defined appropriately. In this lecture we use the saddle point method to derive an approximation to coeff [∏kmax k=2 qk(z) MPk , zE ] , where qk(z) = 12 ((1 + z) n + (1− z)n) = ∑ r even ( k r ) zr. This coefficient counts the number of ways to choose which edges incident to the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Applied Probability

سال: 2008

ISSN: 1050-5164

DOI: 10.1214/07-aap0498